ExpNet: Landmark-Free, Deep, 3D Facial Expressions

نویسندگان

  • Feng-Ju Chang
  • Anh Tuan Tran
  • Tal Hassner
  • Iacopo Masi
  • Ramakant Nevatia
  • Gérard G. Medioni
چکیده

We describe a deep learning based method for estimating 3D facial expression coefficients. Unlike previous work, our process does not relay on facial landmark detection methods as a proxy step. Recent methods have shown that a CNN can be trained to regress accurate and discriminative 3D morphable model (3DMM) representations, directly from image intensities. By foregoing facial landmark detection, these methods were able to estimate shapes for occluded faces appearing in unprecedented in-the-wild viewing conditions. We build on those methods by showing that facial expressions can also be estimated by a robust, deep, landmark-free approach. Our ExpNet CNN is applied directly to the intensities of a face image and regresses a 29D vector of 3D expression coefficients. We propose a unique method for collecting data to train this network, leveraging on the robustness of deep networks to training label noise. We further offer a novel means of evaluating the accuracy of estimated expression coefficients: by measuring how well they capture facial emotions on the CK+ and EmotiW-17 emotion recognition benchmarks. We show that our ExpNet produces expression coefficients which better discriminate between facial emotions than those obtained using state of the art, facial landmark detection techniques. Moreover, this advantage grows as image scales drop, demonstrating that our ExpNet is more robust to scale changes than landmark detection methods. Finally, at the same level of accuracy, our ExpNet is orders of magnitude faster than its alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turkish Presidential Elections TRT Publicity Speech Facial Expression Analysis

In this paper, facial expressions of the three Turkish presidential candidates Demirtas, Erdogan and Ihsanoglu (in alphabetical order) are analyzed during the publicity speeches featured at TRT (Turkish Radio and Television) on 03.08.2014. FaceReader is used for the analysis where 3D modeling of the face is achieved using the active appearance models (AAM). Over 500 landmark points are tracked ...

متن کامل

3D Facial Landmark Tracking and Facial Expression Recognition

In this paper, we address the challenging computer vision problem of obtaining a reliable facial expression analysis from a naturally interacting person. We propose a system that combines a 3D generic face model, 3D head tracking, and 2D tracker to track facial landmarks and recognize expressions. First, we extract facial landmarks from a neutral frontal face, and then we deform a 3D generic fa...

متن کامل

Every Smile is Unique: Landmark-Guided Diverse Smile Generation

Each smile is unique: one person surely smiles in different ways (e.g. closing/opening the eyes or mouth). Given one input image of a neutral face, can we generate multiple smile videos with distinctive characteristics? To tackle this one-to-many video generation problem, we propose a novel deep learning architecture named Conditional MultiMode Network (CMM-Net). To better encode the dynamics o...

متن کامل

How far are we from solving the 2D&3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)

This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a ver...

متن کامل

Landmark-free smile intensity estimation

Facial expression analysis is an important field of research, mostly because of the rich information faces can provide. The majority of works published in the literature have focused on facial expression recognition and so far estimating facial expression intensities have not gathered same attention. The analysis of these intensities could improve face processing applications on distinct areas,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00542  شماره 

صفحات  -

تاریخ انتشار 2018